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Abstract
A theory of free-carrier absorption (FCA) is given for quantum well (QW)
structures from III–V semiconducting materials when electrons are scattered by
alloy disorder. It is found that absorption coefficients due to alloy disorder and
to phonons are of the same order. The obtained results are compared with those
of the quantum theory of FCA in a bulk semiconductor and it is found that the
absorption coefficient decreases with increasing photon frequency and increases
with increasing temperature. It is also shown that the absorption coefficient
increases with decreasing layer thickness. In addition, it was found that in QW
structures the electron–alloy-disorder interaction gives a greater contribution to
the absorption than the electron–acoustic and piezoelectric phonon interaction.

1. Introduction

The developments in the molecular beam epitaxy (MBE) and modulation doping technique
have produced high-quality heterojunctions and quantum wells (QWs) involving binary
and ternary compound semiconductors. An important scattering mechanism in ternaries is
the alloy-disorder scattering [1–4]. In ternary structures, free-carrier absorption (FCA) is
affected by alloy scattering, which is an intrinsic process arising from the random distribution
of the alloy atoms on the available lattice points. Alloy-disorder scattering in QWs and
superlattices has been the subject of many theoretical investigations [5–9]. FCA is one of
the powerful means to understand the scattering mechanisms of carriers. The theory of FCA
in semiconducting QWs was studied considering the absorption assisted by acoustic [10] and
polar optical [11–14] phonon scattering including the effects of phonon confinement [15],
piezoelectric coupling [16], ionized impurites [17], interface roughness [18] and electron–
electron scattering [19].

In this paper we present the theory of FCA for the two-dimensional electron gas in QW
structures of ternary alloys when carriers are scattered by alloy disorder. We consider the FCA
for the cases where the radiation field is polarized in the plane of the layer. The absorption
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coefficient will be calculated for the examples of InGAs QWs. We shall also consider in detail
the applicability of the standard semiclassical approximation to these QW structures.

2. Formalism

2.1. Theory of FCA

We consider a QW of an alloy denoted by the symbol A1−xBxC. Assuming the usual effective-
mass approximation for the conduction band, the energy eigenfunctions and eigenvalues for
electrons in an infinite QW can be written as

Ek,n = Ek + En = h̄2k2

2m∗ + n2E0, E0 = π2h̄2

2m∗d2
, n = 1, 2, 3, . . .

�k,n =
(

2

�0

)1/2

exp(i�k�r) sin

(
nπz

d

)
. (1)

Here d is the thickness of the layer, �k = {kx, ky} and �r = {x, y} are the wavevector and position
vector in the plane of the layer, �0 is the volume of the crystal, n is the number of the subband
and z is the coordinate perpendicular to the plane of the layer.

The FCA coefficient when alloy-disorder scattering is dominant can be related to the
scattering rate for free carriers to make an intraband transition from a given initial state with
the simultaneous scattering of carriers by alloy disorder and can be calculated using the standard
second-order Born golden rule approximation. In second-order perturbation theory, the matrix
element connecting the initial and final states for an optical transition in a QW is given by

〈k′n′|M|kn〉 =
∑
k′′m

[ 〈k′n′|HR|k′′m〉〈k′′m|Vi |kn〉
Enk − Emk′′

+
〈k′n′|Vi |k′′m〉〈k′′m|HR|kn〉

Enk − Emk′′ + h̄�

]
(2)

where kn, k′n′ and k′′m are the wavevector and subband indices for initial, final and intermediate
states, respectively, h̄� is the photon energy, HR is the interaction Hamiltonian between the
electrons and the radiation field and Vi is the alloy-disorder scattering potential.

The matrix elements of the electron–photon interaction Hamiltonians using the
wavefunctions are

〈k′n′|HR|kn〉 = − eh̄

m∗

(
2πh̄n0

ε��0

)1/2

(�ε�k)δnn′δkxkx′ δkyky′ . (3)

Here ε is the dielectric constant of the material, n0 is the number of photons in the radiation
field and �ε is the polarization vector of the radiation field.

We consider the virtual-crystal potential to be perfectly periodic as it is composed of the
composition-weighted potentials due to the A and B atoms. We assume that the alloy-disorder
scattering potential under the virtual-crystal approximation is a spherically symmetric square
well of height �E and radius r0. The potential at site (ri , zi) may be expanded in the following
two-dimensional Fourier series [7, 8]:

Vi(ri, zi) =
∑
q‖

2π�E
rzJ1(rzq‖)

q‖
exp [i�q‖(�r − �ri)] r2

z = r2
0 − (z − zi)

2 (4)

where J1 is the first-order Bessel function of the first kind. Using this form of the potential,
the matrix element for transition from a state kn to another state k′n′ may be expressed as

〈k′n′|Vi |kn〉 = 2

d
exp(−iqII ri)δk,k′+qII

�nn′(zi) (5)
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where

�nn′(zi) =
∫ zi+r0

zi−r0

dz 2π�E
rzJI (rzqII )

qII

sin
nπz

d
sin

n′πz

d
.

Now considering all the alloy sites to be randomly distributed in the ratio x : (1 − x), one
may write for the scattering rate from the initial state to the final state

Wkn,k′n′ = 16π2e2n0N0x(1 − x)| �k′ − �k|2
εm ∗2 �3�2

0d
Fnn′δ(En′k′ − Enk − h̄�) (6)

where

Fnn′ =
∫ d/2

−d/2
dzi |�nn′(zi)|2

and N0 is the number of alloy sites per unit volume.
The absorption coefficient is calculated by summing over all occupied initial states and

unoccupied final states. The absorption coefficient for a radiation field polarized in the plane
of the layer is finally given by

α = 4e2m ∗ N0x(1 − x)

πh̄6d3cε1/2�3

∞∑
n=1

Nf∑
n=1

∫ ∫
(fkn − fk′n′)Fnn′(Ek′ + Ek)

× δ(Ek′n′ − Ekn − h̄�) dEk dEk′ . (7)

The integral over final states can be eliminated using the energy-conserving delta function.
In order to evaluate Fnn′ , it is assumed that q‖rz � 1, so that J1(x) ≈ x

2 , and also that the
variations of the sine terms in the range zi − r0 � z < zi + r0 are negligible. We may then
put z = zi in the arguments and take the terms outside the integral, thus obtaining a factor 4

3 r3
0

after integration. The zi integration is then performed analytically to give

Fnn′ =
(

4

3
πr3

0 �E

)2
d

4

(
1 +

1

2
δnn′

)
.

When the distribution function for a quasi-two-dimensional nondegenerate electron gas

fnk =
(

2πh̄2ned

m∗kBT γ

)
exp

(
− En

kBT

)
exp

(
− EK

kBT

)
, γ =

∑
n

exp

(
− En

kBT

)
(8)

is used in equation (7), we obtain for the FCA coefficient in a QW structure

α = 64π2e2r6
0 (�E)2neN0x(1 − x)kBT

9ε1/2h̄4dc�3γ

∞∑
n=1

Nf∑
n′=1

(
1 +

1

2
δnn′

)
e− n2E0

kB T

×
[

1 +
h̄� − (n′2 − n2)E0

2kBT

](
1 − exp

(
− h̄�

kBT

))
(9)

where Nf is the largest integer equal to or less than (n2 + h̄ �
E0

)
1
2 .

Here ne is the concentration of the electrons.
For comparison, the FCA in a nondegenerate bulk semiconductor is [3]

αB = 4
√

2e2N0x(1 − x)V 2m∗ 1
2 ne(kBT )

1
2

3ε
1
2 ch̄2(h̄�)2

(1 − e− h̄�
kbT )

× e
h̄�

2kB T x

{
3

2
W− 1

2 , 3
2

(
h̄�

kBT

)
+ W 1

2 , 3
2

(
h̄�

kBT

)}
(10)

where V is the matrix element of the difference between the atomic potentials of the component
semiconducting alloys and Wµ,K(Z) is the Whitteker function. In the quantum limit, in which
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only the ni = 1 (ground) quantum level is occupied, the ratio of the FCA in a quasi-two-
dimensional QW system to that in the bulk

α

αB

= 6
√

2(kBT )
1
2

�
5
2 dm∗ 1

2

e− h̄�
2kB T

∑Nf

n=1

(
1 + 1

2δ1,n

)(
1 + h̄�−(n2−1) E0

2kBT

)
{

3
2W− 1

2 , 3
2

(
h̄�
kBT

)
+ W 1

2 , 3
2

(
h̄�
kBT

)} (11)

where we have used V 2 = ( 2
3πr3

0 (�E))2.
The ratio of the FCA coefficient for a QW structure to that in a bulk semiconductor of

the same material, α/αB given by equation (11), is shown as a function of photon frequency.
The FCA coefficient becomes an oscillatory function of both the QW thickness and the photon
frequency in QW structure.

2.2. Connection with semiclassical formalism

It is interesting to note that in the quantum size limit, in a temperature range where the inter-
subband transitions are not allowed due to the energy differences between the subbands being
very large

(
i.e. E2−E1

kBT
= 3E0

kBT
� 1 and E2−E1

h̄�
= 3E0

h̄�
� 1

)
we can assume n = n′ = 1. The

expression for α reduces in this case to

α = 32π2e2r6
0 (�E)2neN0x(1 − x)kBT

3ε
1
2 h̄4cd�3

(
1 − e− h̄�

kB T
)(

1 +
h̄�

2kBT

)
. (12)

In the limit of very long wavelengths, the absorption coefficient is known to reduce to
the semiclassical form [20], which scales as λ2. The semiclassical expression becomes a
reasonable approximation in the limit of kBT � h̄� for nondegenerate statistics. In this limit
the absorption coefficient of equation (12) can be rewritten:

αsc = 32π2e2r6
0 (�E)2neN0x(1 − x)

3ε
1
2 h̄3cd�2

. (13)

In this paper, we shall refer to the quantity αsc given by equation (13) as the semiclassical
absorption coefficient. It displays the widely assumed quadratic dependence on the wavelength
of the light. Then αsc can be expressed in terms of mobility µ:

αsc = e3ne

ε1/2cd2m∗2�2µ
. (14)

Here we do this using the quasi-two-dimensional electron mobility due to scattering by
alloy disorder [6, 8]

µ = 3eh̄3

32(πm∗r3
0 �E)2N0 dx(1 − x)

. (15)

3. Results and discussion

We have obtained general expressions for the FCA coefficients for QWs when the carriers are
scattered by alloy disorder. The FCA coefficient is expressed as a function of h̄� and also
depends on d and T . On the basis of expressions obtained we have constructed figures 1–3.
As a numerical example, we consider the FCA in GaInAs and GaAlAs QWs for alloy-disorder
scattering. The relevant values of physical parameters are taken to be [7] �E = 0.53 eV,
r0 = √

3a/4 and N0 = 4/a3, where a is the lattice constant.
In figure 1, we plot the FCA coefficient α as a function of the photon frequency � in

Ga0.9 Al0.1As QWs for ne = 1017 cm−3 at T = 300 K. Curve 3 refers to alloy disorder and
curves 1 and 2 to confined and bulk phonon modes [15]. The frequency range is chosen such
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Figure 1. FCA coefficient in a Ga0.9Al0.1As QW due to alloy-disorder scattering as a function of
the photon frequency for T = 300 K (3). Curves 1 and 2 correspond to the FCA for GaAs/GaAlAs
QWs when the carriers are scattered by confined and bulk phonons (see [15]), respectively. In the
three cases the bulk density of electrons is the same, ne = 1017 cm−3, and d = 10 nm.

that only the two lowest subbands are involved in the transitions. It is shown that α decreases
monotonically with increasing photon frequency. It can also be seen that FCA coefficients due
to alloy disorder and to bulk and confined LO phonons are of the same order.

In figure 2, we plot the FCA coefficient α in a GaInAs QW with d = 10 nm as a
function of the photon frequency for various temperatures. It is shown that α decreases
monotonically with increasing photon frequency and increases with increasing temperature.
The kinks in the curves indicate alloy-disorder-assisted transition between the subbands. The
enhancement of the absorption coefficient associated with scattering to higher subbands also
holds for other scattering mechanisms [10–14]. Curve 1 refers to alloy disorder and curves 2
and 3 to piezoelectric and acoustic phonons scattering respectively. It is shown that in QW
structures the electron–alloy-disorder scattering contribution to the absorption still dominates
over that due to the electron–acoustic and piezoelectric phonon scattering contribution.

The ratio of the FCA coefficient for a QW structure to that in a bulk semiconductor of
the same material, α/αβ , given by equation (11), is shown as a function of photon frequency
for various thickness QWs in figure 3. As in figure 1 the inflection points correspond to the
connection of new intersubband transitions. Figure 3 shows the FCA coefficient is enhanced
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Figure 2. The FCA coefficient in a Ga0.47In0.53As QW structure for alloy-disorder scattering as a
function of the photon frequency for d = 10 nm. We have chosen T = 300 K (1), T = 77 K(1′)
and T = 20 K (1′′). Curves 2 and 3 (see [16]) correspond to the FCA GaAs films when the carriers
are scattered by piezoelectric and acoustic phonons respectively. In the three cases the bulk density
of electrons is the same, ne = 1.73 × 1015 cm−3.

Figure 3. The ratio of the FCA in a quasi-two-dimensional QW structure to its value in the bulk
shown as a function of photon frequency for alloy-disorder scattering for various thicknesses of
QW using the parameters characteristic of Ga0.47In0.53As. We have chosen d = 10 nm (— · —),
15 nm (– – –) and 20 nm (——).
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as the QW thickness decreases. Also, as the QW thickness decreases, the location of the first
inflection point in the absorption is shifted to higher photon frequencies. As the thickness of
the QW decreases the separation between adjacent subbands increases, and when h̄� < 3E0

the alloy-disorder-assisted transitions can only take place to states in the same subband. For
thickness QW such that h̄� < 3E0, the absorption process depends just upon the rate at
which the free carriers are scattered by the alloy disorder. It was predicted in [21, 22] that the
relaxation rate due to alloy-disorder scattering in QW structures increases with decrease of
QW thickness. This increase in the scattering rate explains the increase in the FCA coefficient
predicted in our present numerical results for a QW structure. Also, because of the increase in
E0 with decreasing QW thickness, the threshold at which an alloy-disorder-assisted transition
can take place to the first excited subband will be shifted to higher frequency as the QW
thickness decreases.

Acknowledgments

The author would like to thank Professors M I Aliev and F M Gashimzade for helpful
discussions.

References

[1] Harrison J W and Hauser J R 1976 Phys. Rev. B 13 5351
[2] Littlejohn M A, Hauser J R and Clisson T H 1977 Appl. Phys. Lett. 30 242
[3] Sieranski K and Szatkowski J 1981 Phys. Status Solidi b 104 57
[4] Aliev M I, Khalilov Kh A and Ibragimov G B 1987 Phys. Status Solidi b 140 K83
[5] Bastard G 1983 J. Appl. Phys. Lett. 43 591
[6] Basu P K and Bhattacharyya K 1985 Phys. Status Solidi b 128 K175
[7] Basu P K and Raychaundhury D 1990 J. Appl. Phys. 68 3443
[8] Ray P and Basu P K 1992 Phys. Rev. B 46 9169
[9] Ibragimov G B 2000 Int. Conf. on Opt. Semicond., OS 2000 ed N A Borisevich et al (Ulyanovski, Russia:

University Press) p 25
Ibragimov G B 1999 Fizika 5 49

[10] Spector H N 1983 Phys. Rev. B 28 971
[11] Adamska H and Spector H N 1984 J. Appl. Phys. 56 11 239
[12] Trallero Ciner C and Anton M 1986 Phys. Status Solidi b 133 563
[13] Gurevich V L, Parshin D A and Stengel K E 1988 Fiz. Tverd. Tela 30 1468
[14] Wu C C and Lin C J 1996 J. Appl. Phys. 79 781
[15] Bhat J S, Kubakaddi S S and Mulimani B G 1992 J. Appl. Phys. 72, 40 4966
[16] Wu C C and Lin C J 1994 J. Phys.: Condens. Matter 6 10 147
[17] Gashimzade F M and Tahirov E V 1990 Phys. Status Solidi b 160 177
[18] Vurgatman I and Meyer J R 1999 Phys. Rev. B 60 14 294
[19] Zegrya G G and Perlin V E 1998 Fiz. Tekh. Poluprovodn. 32 466
[20] Jensen B 1975 Ann. Phys., NY 95 229
[21] Chattopadhyay D 1985 Phys. Rev. B 31 11 455
[22] Bockelmann U, Abstreiter G, Weimann G and Schlapp W 1990 Phys. Rev. B 41 7864


